Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 154: 104628, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387524

RESUMO

Herbivorous insects can identify their host plants by sensing plant secondary metabolites as chemical cues. We previously reported the two-factor host acceptance system of the silkworm Bombyx mori larvae. The chemosensory neurons in the maxillary palp (MP) of the larvae detect mulberry secondary metabolites, chlorogenic acid (CGA), and isoquercetin (ISQ), with ultrahigh sensitivity, for host plant recognition and feeding initiation. Nevertheless, the molecular basis for the ultrasensitive sensing of these compounds remains unknown. In this study, we demonstrated that two gustatory receptors (Grs), BmGr6 and BmGr9, are responsible for sensing the mulberry compounds with attomolar sensitivity for host plant recognition by silkworm larvae. Calcium imaging assay using cultured cells expressing the silkworm putative sugar receptors (BmGr4-10) revealed that BmGr6 and BmGr9 serve as receptors for CGA and ISQ with attomolar sensitivity in human embryonic kidney 293T cells. CRISPR/Cas9-mediated knockout (KO) of BmGr6 and BmGr9 resulted in a low probability of making a test bite of the mulberry leaves, suggesting that they lost the ability to recognize host leaves. Electrophysiological recordings showed that the loss of host recognition ability in the Gr-KO strains was due to a drastic decrease in MP sensitivity toward ISQ in BmGr6-KO larvae and toward CGA and ISQ in BmGr9-KO larvae. Our findings have revealed that the two Grs, previously considered to be sugar receptors, are molecules responsible for detecting plant phenolics in host plant recognition.


Assuntos
Bombyx , Humanos , Animais , Larva/fisiologia , Bombyx/metabolismo , Plantas , Paladar/fisiologia , Açúcares/metabolismo , Folhas de Planta/metabolismo
2.
Pest Manag Sci ; 79(9): 3312-3325, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37103977

RESUMO

BACKGROUND: General odor-binding proteins (GOBPs) play critical roles in insect olfactory recognition of sex pheromones and plant volatiles. Therefore, the identification of GOBPs in Hyphantria cunea (Drury) based on their characterization to pheromone components and plant volatiles is remain unknown. RESULTS: In this study, two H. cunea (HcunGOBPs) genes were cloned, and their expression profiles and odorant binding characteristics were systematically analyzed. Firstly, the tissue expression study showed that both HcunGOBP1 and HcunGOBP2 were highly expressed in the antennae of both sexes, indicating their potential involvement in the perception of sex pheromones. Secondly, these two HcunGOBPs genes were expressed in Escherichia coli and ligand binding assays were used to assess the binding affinities to its sex pheromone components including two aldehydes and two epoxides, and some plant volatiles. HcunGOBP2 showed high binding affinities to two aldehyde components (Z9, Z12, Z15-18Ald and Z9, Z12-18Ald), and showed low binding affinities to two epoxide components (1, Z3, Z6-9S, 10R-epoxy-21Hy and Z3, Z6-9S, 10R-epoxy-21Hy), whereas HcunGOBP1 showed weak but significant binding to all four sex pheromone components. Furthermore, both HcunGOBPs demonstrated variable binding affinities to the plant volatiles tested. Thirdly, in silico studies of HcunGOBPs utilized homology, structure modeling, and molecular docking revealed critical hydrophobic residues might be involved in the binding of HcunGOBPs to their sex pheromone components and plant volatiles. CONCLUSION: Our study suggests that these two HcunGOBPs may serve as potential targets for future studies of HcunGOBPs ligand binding, providing insight in the mechanism of olfaction in H. cunea. © 2023 Society of Chemical Industry.


Assuntos
Lepidópteros , Mariposas , Receptores Odorantes , Atrativos Sexuais , Animais , Feminino , Masculino , Atrativos Sexuais/química , Odorantes , Ligantes , Simulação de Acoplamento Molecular , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/metabolismo , Receptores Odorantes/química
3.
Insect Biochem Mol Biol ; 155: 103927, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871864

RESUMO

Sensing of midgut internal contents is important for ensuring appropriate hormonal response and digestion following the ingestion of dietary components. Studies in mammals have demonstrated that taste receptors (TRs), a subgroup of G protein-coupled receptors (GPCRs), are expressed in gut enteroendocrine cells (EECs) to sense dietary compounds and regulate the production and/or secretion of peptide hormones. Although progress has been made in identifying expression patterns of gustatory receptors (GRs) in gut EECs, it is currently unknown whether these receptors, which act as ligand-gated ion channels, serve similar functions as mammalian GPCR TRs to elicit hormone production and/or secretion. A Bombyx mori Gr, BmGr6, has been demonstrated to express in cells by oral sensory organs, midgut and nervous system; and to sense isoquercitrin and chlorogenic acid, which are non-nutritional secondary metabolites of host mulberry. Here, we show that BmGr6 co-expresses with Bommo-myosuppressin (BMS) in midgut EECs, responds to dietary compounds and is involved in regulation of BMS secretion. The presence of dietary compounds in midgut lumen after food intake resulted in an increase of BMS secretions in hemolymph of both wild-type and BmGr9 knockout larvae, but BMS secretions in BmGr6 knockout larvae decreased relative to wild-type. In addition, loss of BmGr6 led to a significant decrease in weight gain, excrement, hemolymph carbohydrates levels and hemolymph lipid levels. Interestingly, although BMS is produced in both midgut EECs and brain neurosecretory cells (NSCs), BMS levels in tissue extracts suggested that the increase in hemolymph BMS during feeding conditions is primarily due to secretion from midgut EECs. Our studies indicate that BmGr6 expressed in midgut EECs responds to the presence of dietary compounds in the lumen by eliciting BMS secretion in B. mori larvae.


Assuntos
Bombyx , Proteínas de Drosophila , Animais , Paladar , Células Enteroendócrinas/metabolismo , Sistema Digestório/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Drosophila/metabolismo , Insetos/metabolismo , Larva/metabolismo , Bombyx/metabolismo , Mamíferos/metabolismo
4.
Insect Biochem Mol Biol ; 150: 103858, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244651

RESUMO

The regulatory hormones known as tachykinin-related peptides (TRPs) are identified as brain-gut peptides in insects. Dietary components from mulberry leaves, including glucose, induce secretion of TRPs from Bombyx mori midgut. However, the sensory molecules that recognize these compounds are still unknown. Here, we identified the gustatory receptor, BmGr4, as a sucrose and glucose receptor using Ca2+ imaging. Immunostaining revealed BmGr4 expression not only in the midgut, but also in the brain. In addition, BmGr4 expression was found to co-localize with TRP-expressing cells in both midgut enteroendocrine cells (EECs) and brain neurosecretory cells (NSCs). Furthermore, dietary nutrients after food intake result in an increase of TRP-level in hemolymph of silkworm larvae. These results provide significant circumstantial evidence for the involvement of the sucrose and glucose receptor, BmGr4, in the elicitation of TRP secretion in midgut EECs and brain NSCs.


Assuntos
Bombyx , Glucose , Animais , Glucose/metabolismo , Sacarose/farmacologia , Sacarose/metabolismo , Bombyx/metabolismo , Taquicininas/metabolismo , Células Enteroendócrinas/metabolismo , Larva/metabolismo
5.
Insects ; 13(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055940

RESUMO

The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.

6.
Insect Biochem Mol Biol ; 139: 103649, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560243

RESUMO

Field-evolved resistance of insect pests to Bacillus thuringiensis (Bt) toxins (Cry toxins) is a threat to the efficacy of Bt-based bio-insecticides and transgenic crops. Recent reports have suggested that ATP-binding cassette transporter subfamily C2 (ABCC2) and cadherin-like receptor play important roles in conferring susceptibility to Cry1 toxins. However, the receptors involved in Bt susceptibility in each insect remain unclear. To determine the receptors that are involved in the susceptibility of Bombyx mori to Cry1 toxins (1Ab, 1Ac and 1Fa), we conducted diet overlay bioassay using B. mori strains disrupted with one or two receptor (s) among BmABCC2, BmABCC3, and cadherin-like receptor (BtR175) generated by transcription activator-like effector nuclease (TALEN)-mediated gene editing. The single-knockout strains for BmABCC2 showed resistance to Cry1Ab and Cry1Ac, whereas only strains with double knockout of BmABCC2 and BmABCC3 exhibited high resistance to Cry1Fa. Progeny populations generated from the crossing of heterozygotes for BtR175 knockout allele included 25% theoretical homozygotes for the BtR175 knockout allele and they showed resistance to Cry1Ab and Cry1Ac. Then, through a cell swelling assay using Sf9 cells ectopically expressing the receptor, we analyzed the mechanisms underlying the different contributions of BmABCC2, BmABCC3, and BtR175 to larval susceptibility. The receptor activity of BmABCC2 for Cry1Ab and Cry1Ac was far higher than that of BmABCC3, and BtR175 synergistically enhanced the receptor activity of BmABCC2. This result well explained the important involvement of BmABCC2 and BtR175 in the larval susceptibility to Cry1A toxins. By contrast, the receptor activities of BmABCC2 and BmABCC3 for Cry1Fa were observed at a similar level and synergistic effect of BtR175 was small. This finding explains the equal importance of BmABCC2 and BmABCC3 and very small contribution of BtR175 on larval susceptibility to Cry1Fa. Thus, we demonstrated the different importance of BmABCC2, BmABCC3, and BtR175 to various Cry1 toxins as susceptibility-determining factors in B. mori larvae and the underlying basis for the observed differences. Furthermore, a weak correlation was indicated between the binding affinity and receptor activities of BmABCC2 and BmABCC3 to Cry1 toxins.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/fisiologia , Bombyx/genética , Caderinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Animais , Bombyx/metabolismo , Bombyx/microbiologia , Caderinas/metabolismo , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Larva/microbiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
7.
J Insect Physiol ; 132: 104263, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34052304

RESUMO

Most lepidopteran insect larvae exhibit stepwise feeding behaviors, such as palpation using the maxillary palps (MPs) followed by test biting and persistent biting. However, the purpose of palpation has been unclear. In particular, nothing is known about the neurons in the MP and their mode of recognition of undesired plants, although such neurons have been suggested to exist. In this study, we used larvae of the stenophagous insect Bombyx mori and compared the roles of palpation and test biting in the selection of feeding behavior. When the larvae were given non-host plant leaves, they did not initiate test biting, indicating that non-host plant leaves were recognized via palpation without biting, and that this behavior resulted in a lack of persistent biting, as the leaves were judged non-suitable for consumption. Surface extracts of inedible leaves significantly suppressed test biting of mulberry leaves, a host plant of B. mori, suggesting that secondary metabolites on the leaf surface of inedible leaves function as test biting suppressors, even when another conditions are suitable for test biting. The allelochemical coumarin, which is found in the inedible leaves of cherry, Cerasus speciosa, significantly suppressed test biting of mulberry leaves, suggesting that coumarin is a possible deterrent to the eating of cherry leaves. Using the electrophysiological method of tip recording and a leaf-surface extract as the test material, leaf-surface compound-responsive neurons were identified in the MP. In addition, several neurons that respond to coumarin in the attomolar range were identified, suggesting that the larvae use ultrasensitive neurons in the MP to recognize inedible leaves. In the HEK293T cell heterologous expression system, the B. mori gustatory receptors BmGr53 and BmGr19, which were previously found to be expressed in the MP and to respond to coumarin in the attomolar range, responded to a leaf-surface extract of C. speciosa, suggesting that these receptors may be present on the inedible-leaf-recognizing neurons of the MP. These findings suggest that ultrasensitive plant secondary metabolite-recognizing neurons in the MP allow for the recognition of non-host plants via palpation without risking damage caused by ingesting harmful allelochemicals.


Assuntos
Bombyx , Comportamento Alimentar/fisiologia , Feromônios , Percepção Gustatória/fisiologia , Animais , Bombyx/metabolismo , Bombyx/fisiologia , Células Quimiorreceptoras/metabolismo , Cumarínicos/farmacologia , Células HEK293 , Humanos , Larva/metabolismo , Larva/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Feromônios/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Receptores de Superfície Celular/efeitos dos fármacos , Paladar/fisiologia
8.
ACS Appl Mater Interfaces ; 13(15): 17236-17242, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33830729

RESUMO

Heparan sulfate (HS) has important emerging roles in oncogenesis, which represents potential therapeutic strategies for human cancers. However, due to the complexity of the HS signaling network, HS-targeted synthetic cancer therapeutics has never been successfully devised. To conquer the challenge, we developed HS-instructed self-assembling peptides by decorating the "Cardin-Weintraub" sequence with aromatic amino acids. The HS-binding interactions induce localized accumulation of synthetic peptides triggering molecular self-assembly in the vicinity of highly expressed Heparan sulfate proteoglycans (HSPGs) on the cancer cell membrane. The nanostructures hinder the binding of HSPG with metastasis promoting protein-heparin-binding EGF-like growth factor (HBEGF) inhibiting the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Our study proved that HS-instructed self-assembly is a promising synthetic therapeutic strategy for targeted cancer migration inhibition.


Assuntos
Movimento Celular/efeitos dos fármacos , Heparitina Sulfato/química , Heparitina Sulfato/farmacologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Nanoestruturas/química , Metástase Neoplásica
9.
PeerJ ; 9: e10919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717687

RESUMO

The olfactory system of insects is important for behavioral activities as it recognizes internal and external volatile stimuli in the environment. Insect odorant degrading enzymes (ODEs), including antennal-specific carboxylesterases (CXEs), are known to degrade redundant odorant molecules or to hydrolyze important olfactory sex pheromone components and plant volatiles. Compared to many well-studied Type-I sex pheromone-producing lepidopteran species, the molecular mechanisms of the olfactory system of Type-II sex pheromone-producing Hyphantria cunea (Drury) remain poorly understood. In the current study, we first identified a total of ten CXE genes based on our previous H. unea antennal transcriptomic data. We constructed a phylogenetic tree to evaluate the relationship of HcunCXEs with other insects' CXEs, and used quantitative PCR to investigate the gene expression of H. cunea CXEs (HcunCXEs). Our results indicate that HcunCXEs are highly expressed in antennae, legs and wings, suggesting a potential function in degrading sex pheromone components, host plant volatiles, and other xenobiotics. This study not only provides a theoretical basis for subsequent olfactory mechanism studies on H. cunea, but also offers some new insights into functions and evolutionary characteristics of CXEs in lepidopteran insects. From a practical point of view, these HcunCXEs might represent meaningful targets for developing behavioral interference control strategies against H. cunea.

10.
J Agric Food Chem ; 69(1): 55-66, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356240

RESUMO

Hyphantria cunea (Drury) is a destructive invasive pest species in China that uses type II sex pheromone components. To date, however, the binding mechanisms of its sex pheromone components to their respective pheromone-binding proteins (HcunPBPs 1/2/3) have not been explored. In the current study, all three HcunPBPs were expressed in the antennae of both sexes. The prokaryotic expression and ligand binding assays were employed to study the binding of the moth's four sex pheromone components, including two aldehydes and two epoxides, and 24 plant volatiles to the HcunPBPs. Our results showed that the abilities of these HcunPBPs to bind to the aldehydes were significantly different from binding to the epoxides. These three HcunPBPs also selectively bind to some of the plant volatiles tested. Our molecular docking results indicated that some crucial hydrophobic residues might play a role in the binding of HcunPBPs to their sex pheromone components. Three HcunPBPs have different selectivities for pheromone components with both major and minor structural differences. Our study provides a fundamental insight into the olfactory mechanism of moths at the molecular level, especially for moth species that use various type II pheromone components.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Insetos/metabolismo , Atrativos Sexuais/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Animais , Proteínas de Transporte/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Feminino , Proteínas de Insetos/química , Masculino , Simulação de Acoplamento Molecular , Mariposas/química , Mariposas/metabolismo , Ligação Proteica , Atrativos Sexuais/química , Olfato
11.
Nano Lett ; 21(1): 747-755, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356330

RESUMO

The Yes-associated protein (YAP) is a major oncoprotein responsible for cell proliferation control. YAP's oncogenic activity is regulated by both the Hippo kinase cascade and uniquely by a mechanical-force-induced actin remodeling process. Inspired by reports that ovarian cancer cells specifically accumulate the phosphatase protein ALPP on lipid rafts that physically link to actin cytoskeleton, we developed a molecular self-assembly (MSA) technology that selectively halts cancer cell proliferation by inactivating YAP. We designed a ruthenium-complex-peptide precursor molecule that, upon cleavage of phosphate groups, undergoes self-assembly to form nanostructures specifically on lipid rafts of ovarian cancer cells. The MSAs exert potent, cancer-cell-specific antiproliferative effects in multiple cancer cell lines and in mouse xenograft tumor models. Our work illustrates how basic biochemical insights can be exploited as the basis for a nanobiointerface fabrication technology which links nanoscale protein activities at specific subcellular locations to molecular biological activities to suppress cancer cell proliferation.


Assuntos
Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Actinas , Animais , Feminino , Humanos , Microdomínios da Membrana , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
12.
Front Physiol ; 11: 807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792974

RESUMO

Insects' olfactory receptor plays a central role in detecting chemosensory information from the environment. Odorant receptors (ORs) and ionotropic receptors (IRs) are two types of olfactory receptors, and they are essential for the recognition of ligands at peripheral neurons. Apriona germari (Hope) (Coleoptera: Cerambycidae) is one of the most serious insect pests that cause damage to economic trees and landscaping trees, resulting in massive environmental damages and economic losses. Olfactory-based management strategy has been suggested as a promising strategy to control this wood-boring beetle. However, the olfactory perception mechanism in A. germari is now almost unknown. In the present study, RNA sequencing analysis was used to determine the transcriptomes of adult A. germari antennae. Among 36,834 unigenes derived from the antennal assembly, we identified 42 AgerORs and three AgerIRs. Based on the tissue expression pattern analysis, 27 AgerORs displayed a female-biased expression. Notably, AgerOR3, 5, 13, 33, and 40 showed a significant female-biased expression and were clustered with the pheromone receptors of Megacyllene caryae in the phylogenetic tree, suggesting that these AgerORs could be potential pheromone receptors for sensing male-produced sex pheromones in A. germari. The AgerIRs expression profile demonstrated that AgerIR2 had high expression levels in male labial palps, suggesting that this receptor may function to detect female-deposited trail-sex pheromone blend of A. germari. In addition, the phylogenetic tree showed that the Orco gene of five cerambycidae species was highly conservative. These results provide a foundation for further studies on the molecular mechanisms of olfactory chemoreception in A. germari apart from suggesting novel targets for the control of this pest in the future.

13.
Genomics ; 112(6): 3846-3855, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32619572

RESUMO

Insects employ a sensitive chemosensory system to accurately recognize external odorants, which help them to make a behavioral response quickly. Semiothisa cinerearia has caused serious damages to Sophora japonica L. in recent years, and there is still a lack of effective strategy to control the pest. Although the two type-II sex pheromones of S. cinerearia, 6Z,9Z-cis-3,4-epoxy-17:H and 3Z,6Z,9Z-17:H, have been identified for 30 years, the molecular mechanisms underlying the chemosensation of the two sex pheromones are still unknown. Here, we found that there are differences in the types of antennae sensilla between sexes, and revealed 146 putative chemosensory genes in the antennal transcriptome. Among these genes, 11 and 40 of them displayed male-biased and female-biased expression, respectively. Our findings greatly improve the chemosensory gene resources for S. cinerearia and provide a foundation for functional studies of these sex-biased genes on the chemosensation of sex pheromones and on other sex-related behaviors.


Assuntos
Mariposas/genética , Receptores Odorantes/genética , Atrativos Sexuais/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Mariposas/fisiologia , Filogenia , Transcriptoma
14.
J Agric Food Chem ; 68(22): 6092-6103, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32392414

RESUMO

Athetis lepigone is a polyphagous pest found around the world that feeds on maize, wheat, and various other important crops. Although it exhibits a degree of resistance to various chemical insecticides, an effective pest-control method has not yet been developed. The sex pheromone communication system plays an essential role in the mating and reproduction of moths, in which pheromone-binding proteins (PBPs) are crucial genes. In this study, we cloned and purified the protein AlepPBP1 using an E. coli expression system and found it had a higher binding affinity to two sex pheromones of A. lepigone, namely, Z7-12:Ac and Z9-14:Ac (with Ki 0.77 ± 0.10 and 1.10 ± 0.20 µM, respectively), than to other plant volatiles. The binding-mode analysis of protein conformation with equilibrium stabilization was obtained using molecular dynamics (MD) simulation and indicated that hydrophobic interactions involving several nonpolar residues were the main driving force for the binding affinity of AlepPBP1 with sex pheromones. Computational alanine scanning (CAS) was performed to further identify key amino acid residues and validate their binding contributions. Each key residue, including Phe36, Trp37, Val52, and Phe118, was subsequently mutated into alanine using site-directed mutagenesis. Binding assays showed that the efficient binding abilities to Z7-12:Ac (F36A, W37A, and F118A) and Z9-14:Ac (F36A, W37A, V52A, and F118A) were almost lost in the mutated proteins. Our results demonstrated that these key amino acid residues are crucial for determining the binding ability of AlepPBP1 to sex pheromones. These findings provide a basis for the use of AlepPBP1 in the studies as a specific target for the development of novel behavioral antagonists with marked inhibition or mating-disruption abilities using computer-aided drug design (CADD).


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Atrativos Sexuais/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Cinética , Masculino , Simulação de Acoplamento Molecular , Mariposas/química , Mariposas/efeitos dos fármacos , Mariposas/genética , Ligação Proteica , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia
15.
J Hazard Mater ; 397: 122777, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32388456

RESUMO

Athetis lepigone is one of the most severe polyphagous pests, and it has developed resistance to different chemical insecticides. Insects primarily rely on the olfactory system to recognize various environmental chemicals, including xenobiotics such as insecticides. Here, we expressed two A. lepigone pheromone-binding proteins (AlepPBP2 and AlepPBP3), and observed they had higher binding affinities to phoxim than other insecticides, with Ki was 3.30 ±â€¯0.38 µM and 3.27 ±â€¯0.10 µM, respectively. Molecular dynamics simulation, binding mode analysis, and computational alanine scanning showed that six residues (Phe15, Phe39, Ile55, Leu65, Ile97, and Phe122) of AlepPBP2 and three residues (Phe12, Ile52, and Ile134) of AlepPBP3 maybe as potential residues that can change protein ability to bind an organophosphorus insecticide phoxim. Then, we used site-directed mutagenesis assay to mutate these residues into alanine, respectively. Subsequently, the binding assays displayed that Phe15, Phe39, and Ile97 of AlepPBP2, Phe12 and Ile134 of AlepPBP3 caused a significant decrease of AlepPBPs binding ability to phoxim, suggesting they should play crucial roles in the AlepPBPs/phoxim interactions. Our findings could further advance in using PBPs as unique targets to design and develop precise and environmentally-friendly pest control agents with high insecticidal potential using a computer-aided drug design (CADD) approach.


Assuntos
Inseticidas , Transtornos do Olfato , Animais , Proteínas de Transporte , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/toxicidade , Feromônios
16.
Pestic Biochem Physiol ; 164: 173-182, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284124

RESUMO

Athetis lepigone (Alep) is a polyphagous pest native to Europe and Asia that has experienced major outbreaks in the summer maize area of China since 2011 and has shown evidence of resistance to some insecticides. Insect olfaction is crucial for recognition of sex pheromones, host plant volatiles and even insecticides, in which two general-odorant binding proteins (GOBPs) play important roles. To elucidate the functions of GOBPs in A. lepigone, we first expressed the two AlepGOBP proteins in the E. coli expression system. Then, the results of fluorescence competitive binding assays demonstrated that the high binding affinity of AlepGOBP2 with sex pheromones [(Z)-7-dodecenyl acetate (Z7-12:Ac), Ki = 0.65 µM; (Z)-9-tetradecenyl acetate (Z9-14:Ac), Ki = 0.83 µM], two maize plant volatiles [Ocimene, Ki = 9.63 µM; (E)-ß-Farnesene, Ki = 4.76 µM] and two insecticides (Chlorpyrifos Ki =5.61 µM; Phoxim, Ki = 4.38 µM). However, AlepGOBP1 could only bind Ocimene (Ki = 13.0 µM) and two insecticides (Chlorpyrifos Ki =4.46 µM; Phoxim, Ki = 3.27 µM). These results clearly suggest that AlepGOBP1 and AlepGOBP2 differentiate among odorants and other ligands. The molecular docking results further revealed different key residues involved in the ligand binding of AlepGOBPs. In summary, this study provides a foundation for exploring the olfactory mechanism of A. lepigone and identified two potential target genes for the development of highly effective insecticides in the future.


Assuntos
Inseticidas , Mariposas , Atrativos Sexuais , Animais , China , Escherichia coli , Proteínas de Insetos , Simulação de Acoplamento Molecular , Odorantes , Feromônios
17.
Langmuir ; 36(14): 3750-3757, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32191038

RESUMO

Malignant brain cancer remains challenging in treatment due to the highly invasive quality of gliomas. Inspired by the upregulated expression of integrin ß1 subunits in tumors, we designed and synthesized an integrin-targeting self-assembling ligand based on a laminin-derived peptide that selectively forms nanofibrous microdomains on the apical membrane of glioma cells, inhibiting their migration and invasion.


Assuntos
Glioma , Movimento Celular , Glioma/tratamento farmacológico , Humanos , Integrina beta1 , Integrinas , Ligantes
18.
Pestic Biochem Physiol ; 163: 227-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973861

RESUMO

Odorant-degrading enzymes (ODEs) are considered to play key roles in odorant inactivation to maintain the odorant receptor sensitivity of insects. Some members of carboxylesterase (CXE) is a major sub-family of ODEs. However, only a few CXEs have been functionally characterized so far. In the present study, we cloned the antennal esterase SexiCXE11 cDNA full-length sequences from the male antennae of a notorious crop pest, Spodoptera exigua, and its encoded 538 amino acids. It was similar to other insect esterases and had the characteristics of a carboxylesterase. We expressed recombinant enzyme in High-Five insect cells and obtained the high level purified recombinant protein by affinity column. Furthermore we test enzyme activity toward its two acetate sex pheromone components (Z9,E12-Tetradecadienyl acetate, Z9E12-14:Ac and Z9-Tetradecenyl acetate, Z9-14:Ac) and other 18 ester plant volatiles. Our results demonstrated that SexiCXE11 degraded acetate sex pheromone components with similar degradation activities (about 15.75% with Z9E12-14:Ac and 19.28% with Z9-14:Ac) and plant volatiles with a relatively high activity such as pentyl acetate and (Z)-3-hexenyl caproate. SexiCXE11 had high hydrolytic activity with these two ester odorants (>50% degradation), which is characterized that although a ubiquitous expression esterase SexiCXE11 may be partly involved with olfaction. This study may facilitate a better understanding of moth ODE differentiation and suggest strategies for the development of new pest behavior inhibitors.


Assuntos
Atrativos Sexuais , Animais , Carboxilesterase , Ésteres , Proteínas de Insetos , Masculino , Feromônios , Plantas , Spodoptera
19.
Chem Commun (Camb) ; 55(52): 7566-7567, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31190033

RESUMO

Correction for 'Enzyme-mediated dual-targeted-assembly realizes a synergistic anticancer effect' by Dingze Mang et al., Chem. Commun., 2019, 55, 6126-6129.

20.
Chem Commun (Camb) ; 55(52): 7474-7477, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31184664

RESUMO

Inspired by clinical studies on alcohol abuse induced endoplasmic reticulum disruption, we designed a N-hydroxylethyl peptide assembly to regulate the ER stress response in cancer cells. Upon coupling with a coumarin derivative via an ester linkage, a prodrug was synthesized to promote esterase-facilitated self-delivery of N-hydroxylethyl peptide assemblies around the ER, inducing ER dilation. Following this, ER-specific apoptosis was effectively and efficiently activated in various types of cancer cells including drug resistant and metastatic ones.


Assuntos
Citosol/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peptídeos/farmacologia , Apoptose/efeitos dos fármacos , Carboxilesterase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Humanos , Microscopia de Fluorescência , Peptídeos/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...